Extensions 1→N→G→Q→1 with N=C4 and Q=C22×Dic5

Direct product G=N×Q with N=C4 and Q=C22×Dic5
dρLabelID
C22×C4×Dic5320C2^2xC4xDic5320,1454

Semidirect products G=N:Q with N=C4 and Q=C22×Dic5
extensionφ:Q→Aut NdρLabelID
C41(C22×Dic5) = C2×D4×Dic5φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4160C4:1(C2^2xDic5)320,1467
C42(C22×Dic5) = C22×C4⋊Dic5φ: C22×Dic5/C22×C10C2 ⊆ Aut C4320C4:2(C2^2xDic5)320,1457

Non-split extensions G=N.Q with N=C4 and Q=C22×Dic5
extensionφ:Q→Aut NdρLabelID
C4.1(C22×Dic5) = D8×Dic5φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4160C4.1(C2^2xDic5)320,776
C4.2(C22×Dic5) = D8⋊Dic5φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4160C4.2(C2^2xDic5)320,779
C4.3(C22×Dic5) = SD16×Dic5φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4160C4.3(C2^2xDic5)320,788
C4.4(C22×Dic5) = SD16⋊Dic5φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4160C4.4(C2^2xDic5)320,791
C4.5(C22×Dic5) = Q16×Dic5φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4320C4.5(C2^2xDic5)320,810
C4.6(C22×Dic5) = Q16⋊Dic5φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4320C4.6(C2^2xDic5)320,811
C4.7(C22×Dic5) = D85Dic5φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4804C4.7(C2^2xDic5)320,823
C4.8(C22×Dic5) = D84Dic5φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4804C4.8(C2^2xDic5)320,824
C4.9(C22×Dic5) = C2×D4⋊Dic5φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4160C4.9(C2^2xDic5)320,841
C4.10(C22×Dic5) = (D4×C10)⋊18C4φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C480C4.10(C2^2xDic5)320,842
C4.11(C22×Dic5) = C2×Q8⋊Dic5φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4320C4.11(C2^2xDic5)320,851
C4.12(C22×Dic5) = (Q8×C10)⋊16C4φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4160C4.12(C2^2xDic5)320,852
C4.13(C22×Dic5) = C4○D4⋊Dic5φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4160C4.13(C2^2xDic5)320,859
C4.14(C22×Dic5) = C20.(C2×D4)φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4160C4.14(C2^2xDic5)320,860
C4.15(C22×Dic5) = C2×D42Dic5φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C480C4.15(C2^2xDic5)320,862
C4.16(C22×Dic5) = (D4×C10)⋊21C4φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4804C4.16(C2^2xDic5)320,863
C4.17(C22×Dic5) = C24.38D10φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C480C4.17(C2^2xDic5)320,1470
C4.18(C22×Dic5) = C2×Q8×Dic5φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4320C4.18(C2^2xDic5)320,1483
C4.19(C22×Dic5) = C10.422- 1+4φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4160C4.19(C2^2xDic5)320,1484
C4.20(C22×Dic5) = C20.76C24φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4804C4.20(C2^2xDic5)320,1491
C4.21(C22×Dic5) = C4○D4×Dic5φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4160C4.21(C2^2xDic5)320,1498
C4.22(C22×Dic5) = C10.1062- 1+4φ: C22×Dic5/C2×Dic5C2 ⊆ Aut C4160C4.22(C2^2xDic5)320,1499
C4.23(C22×Dic5) = C2×C406C4φ: C22×Dic5/C22×C10C2 ⊆ Aut C4320C4.23(C2^2xDic5)320,731
C4.24(C22×Dic5) = C2×C405C4φ: C22×Dic5/C22×C10C2 ⊆ Aut C4320C4.24(C2^2xDic5)320,732
C4.25(C22×Dic5) = C23.22D20φ: C22×Dic5/C22×C10C2 ⊆ Aut C4160C4.25(C2^2xDic5)320,733
C4.26(C22×Dic5) = C2×C40.6C4φ: C22×Dic5/C22×C10C2 ⊆ Aut C4160C4.26(C2^2xDic5)320,734
C4.27(C22×Dic5) = C23.47D20φ: C22×Dic5/C22×C10C2 ⊆ Aut C4160C4.27(C2^2xDic5)320,748
C4.28(C22×Dic5) = M4(2).Dic5φ: C22×Dic5/C22×C10C2 ⊆ Aut C4804C4.28(C2^2xDic5)320,752
C4.29(C22×Dic5) = C22×C52C16central extension (φ=1)320C4.29(C2^2xDic5)320,723
C4.30(C22×Dic5) = C2×C20.4C8central extension (φ=1)160C4.30(C2^2xDic5)320,724
C4.31(C22×Dic5) = C2×C8×Dic5central extension (φ=1)320C4.31(C2^2xDic5)320,725
C4.32(C22×Dic5) = C2×C408C4central extension (φ=1)320C4.32(C2^2xDic5)320,727
C4.33(C22×Dic5) = C20.42C42central extension (φ=1)160C4.33(C2^2xDic5)320,728
C4.34(C22×Dic5) = M4(2)×Dic5central extension (φ=1)160C4.34(C2^2xDic5)320,744
C4.35(C22×Dic5) = C20.37C42central extension (φ=1)160C4.35(C2^2xDic5)320,749
C4.36(C22×Dic5) = C40.70C23central extension (φ=1)1604C4.36(C2^2xDic5)320,767
C4.37(C22×Dic5) = C23×C52C8central extension (φ=1)320C4.37(C2^2xDic5)320,1452
C4.38(C22×Dic5) = C22×C4.Dic5central extension (φ=1)160C4.38(C2^2xDic5)320,1453
C4.39(C22×Dic5) = C2×C23.21D10central extension (φ=1)160C4.39(C2^2xDic5)320,1458
C4.40(C22×Dic5) = C2×D4.Dic5central extension (φ=1)160C4.40(C2^2xDic5)320,1490

׿
×
𝔽